Book Creator

Cистемы счисления

by Polina Nikitina

Cover

Loading...
Loading...
Системы счисления
Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа называются цифрами, а их совокупность - алфавитом системы счисления.
Унарная система
Rounded Rectangle
В любой системе счисления цифры служат для обозначения чисел, называемых узловыми; остальные числа (алгоритмические) получаются в результате каких-либо операций из узловых чисел.
Пример: У вавилонян узловыми являлись числа 1, 10, 60; в римской системе счисления узловые числа - это 1, 5, 10, 50, 100, 500 и 1000.
Простейшая и самая древняя система - так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарную систему ещё называют системой бирок.
Виды систем счисления
Унарная система
Rounded Rectangle
Непозиционные системы
Rounded Rectangle
Позиционные системы
Rounded Rectangle
Простейшая и самая древняя система - так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарную систему ещё называют системой бирок.
Система счисления называется непозиционной, если количественное значение цифры в числе не зависит от её положения в записи числа.

Пример: В древнеегипетской системе счисления числа 1, 2, 3, 4, 10, 13, 40 обозначались следующим образом:
Те же числа в римской системе счисления обозначаются так: I, II, III, IV, X, XIII, XL. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.
Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.
Перевод из десятичной системы счисления в двоичную
Повторение изученного
Перевод из десятичной системы счисления в двоичную
PrevNext