Book Creator

ACID, BASE AND SALTS

by İLKNUR NERGİZ

Pages 4 and 5 of 45

Loading...
The second category of acids are Lewis acids, which form a covalent bond with an electron pair. An example is boron trifluoride (BF3), whose boron atom has a vacant orbital which can form a covalent bond by sharing a lone pair of electrons on an atom in a base, for example the nitrogen atom in ammonia (NH3). Lewis considered this as a generalization of the Brønsted definition, so that an acid is a chemical species that accepts electron pairs either directly or by releasing protons (H+) into the solution, which then accept electron pairs. However, hydrogen chloride, acetic acid, and most other Brønsted-Lowry acids cannot form a covalent bond with an electron pair and are therefore not Lewis acids.[4] Conversely, many Lewis acids are not Arrhenius or Brønsted-Lowry acids. In modern terminology, an acid is implicitly a Brønsted acid and not a Lewis acid, since chemists almost always refer to a Lewis acid explicitly as a Lewis acid.[4]
Loading...
Arrhenius acids
Loading...
The Swedish chemist Svante Arrhenius attributed the properties of acidity to hydrogen ions (H+) or protons in 1884. An Arrhenius acid is a substance that, when added to water, increases the concentration of H+ ions in the water.[4][5] Note that chemists often write H+(aq) and refer to the hydrogen ion when describing acid-base reactions but the free hydrogen nucleus, a proton, does not exist alone in water, it exists as the hydronium ion, H3O+. Thus, an Arrhenius acid can also be described as a substance that increases the concentration of hydronium ions when added to water. Examples include molecular substances such as HCl and acetic acid.
Loading...
Definitions and concepts
Loading...
Modern definitions are concerned with the fundamental chemical reactions common to all acids.
Most acids encountered in everyday life are aqueous solutions, or can be dissolved in water, so the Arrhenius and Brønsted-Lowry definitions are the most relevant.
The Brønsted-Lowry definition is the most widely used definition; unless otherwise specified, acid-base reactions are assumed to involve the transfer of a proton (H+) from an acid to a base.
Hydronium ions are acids according to all three definitions. Although alcohols and amines can be Brønsted-Lowry acids, they can also function as Lewis bases due to the lone pairs of electrons on their oxygen and nitrogen atoms.
Loading...
An Arrhenius base, on the other hand, is a substance which increases the concentration of hydroxide (OH−) ions when dissolved in water. This decreases the concentration of hydronium because the ions react to form H2O molecules:
H3O+
(aq) + OH−
(aq) ⇌ H2O(l) + H2O(l)
Loading...
Due to this equilibrium, any increase in the concentration of hydronium is accompanied by a decrease in the concentration of hydroxide. Thus, an Arrhenius acid could also be said to be one that decreases hydroxide concentration, while an Arrhenius base increases it.
In an acidic solution, the concentration of hydronium ions is greater than 10−7 moles per liter. Since pH is defined as the negative logarithm of the concentration of hydronium ions, acidic solutions thus have a pH of less than 7.
Loading...
Arrhenius acids
Loading...
The Swedish chemist Svante Arrhenius attributed the properties of acidity to hydrogen ions (H+) or protons in 1884. An Arrhenius acid is a substance that, when added to water, increases the concentration of H+ ions in the water.[4][5] Note that chemists often write H+(aq) and refer to the hydrogen ion when describing acid-base reactions but the free hydrogen nucleus, a proton, does not exist alone in water, it exists as the hydronium ion, H3O+. Thus, an Arrhenius acid can also be described as a substance that increases the concentration of hydronium ions when added to water. Examples include molecular substances such as HCl and acetic acid.
Loading...
An Arrhenius base, on the other hand, is a substance which increases the concentration of hydroxide (OH−) ions when dissolved in water. This decreases the concentration of hydronium because the ions react to form H2O molecules:
H3O+
(aq) + OH−
(aq) ⇌ H2O(l) + H2O(l)
Loading...
Due to this equilibrium, any increase in the concentration of hydronium is accompanied by a decrease in the concentration of hydroxide. Thus, an Arrhenius acid could also be said to be one that decreases hydroxide concentration, while an Arrhenius base increases it.
In an acidic solution, the concentration of hydronium ions is greater than 10−7 moles per liter. Since pH is defined as the negative logarithm of the concentration of hydronium ions, acidic solutions thus have a pH of less than 7.