Book Creator

damages of radiation

by NAZMİYE

Pages 4 and 5 of 13

Loading...
Primary Electrons and Secondary Ionization
The main effect radiation has on matter is its ability to ionize atoms to become ions, a phenomenon known as ionization, which is very similar to the photoelectric effect. Radioactive particles or electromagnetic waves with sufficient energy collide with electrons on the atom to knock electrons off the atom. The electron ejected off the atom is called the primary electron. When the primary electrons hold energy, a particle ejecting the primary electron may cause it to eject another electron, either on their own atom or on another atom. This is known as secondary ionization.
However, ionization does not have to completely eject an electron off the atom. It can raise the energy of the electron instead, raising the electron energy to a higher energy state. When the electron reverts to its normal energy level, it emits energy in the form of radiation, usually in the forms of ultraviolet rays or radio waves.
Loading...
Production of X-Rays and Electromagnetic Radiation
Radiation can be both natural and synthetic. Artificially induced radioactivity utilizes primary and secondary ionizations in order to emit X-rays. Most X-ray emission is due to the bombardment of electrons on a metal target. If the electrons have sufficient energy, the inner shell electrons of the atom fall out, and higher-leveled electrons fill in the hole left by the previous electrons. By doing so, packets of energy are released in the forms of X-ray photons. Other forms of ionizing radiation can produce UV and gamma rays in a similar manner. This type of radiation is known as “ionizing radiation.”

All charged particles and rays have the ability to be radioactive; however, not all rays and particles have the energy per photon to ionize atoms. This is known as “non-ionizing radiation.” Non-ionizing radiation has enough energy to excite electrons to move to a higher state, releasing photons of electromagnetic radiation such as visible light, near ultraviolet, and microwaves. Radio waves, microwaves, and neutron radiation (an important application in fission and fusion) all fall under non-ionizing radiation, as their respective energies are too low to ionize atoms.
Loading...
Loading...
Production of X-Rays and Electromagnetic Radiation
Radiation can be both natural and synthetic. Artificially induced radioactivity utilizes primary and secondary ionizations in order to emit X-rays. Most X-ray emission is due to the bombardment of electrons on a metal target. If the electrons have sufficient energy, the inner shell electrons of the atom fall out, and higher-leveled electrons fill in the hole left by the previous electrons. By doing so, packets of energy are released in the forms of X-ray photons. Other forms of ionizing radiation can produce UV and gamma rays in a similar manner. This type of radiation is known as “ionizing radiation.”

All charged particles and rays have the ability to be radioactive; however, not all rays and particles have the energy per photon to ionize atoms. This is known as “non-ionizing radiation.” Non-ionizing radiation has enough energy to excite electrons to move to a higher state, releasing photons of electromagnetic radiation such as visible light, near ultraviolet, and microwaves. Radio waves, microwaves, and neutron radiation (an important application in fission and fusion) all fall under non-ionizing radiation, as their respective energies are too low to ionize atoms.

You've reached the end of the book

Read again

Made with Book Creator